Abstract
The k-Hessian operator σk is the k-th elementary symmetric function of the eigenvalues of the Hessian. It is known that the k-Hessian equation σk(D2u)=f with Dirichlet boundary condition u=0 is variational; indeed, this problem can be studied by means of the k-Hessian energy −∫uσk(D2u). We construct a natural boundary functional which, when added to the k-Hessian energy, yields as its critical points solutions of k-Hessian equations with general non-vanishing boundary data. As a consequence, we establish a Dirichlet's principle for k-admissible functions with prescribed Dirichlet boundary data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.