Abstract
Micromixers are a critical component in microfluidics. However, most 2D passive micromixers produce optimal mixing at a high flow rate range and 3D micromixers require mm-scale channels or a complex assembly that is unsuitable for microfluidic applications. Here, we reported a 3D PDMS micromixer based on the splitting-stretching-recombination (SSR) of streams to facilitate molecular diffusion, which can effectively and rapidly mix solutions with low Reynolds numbers (0.01-10). The fabrication of our micromixer is convenient with only two steps─two-photon polymerization (2PP) 3D printing and soft lithography, with high resolution, reproducibility, and ease for integration. We investigated the mixing performance of the micromixer by CFD simulations and experimental studies under a confocal microscope; the results confirmed its better performance and higher chip miniaturization than others. It can achieve a mixing efficiency above 0.90 (which is generally regarded as complete mixing) for low-Re solutions (flow rates ≤60 μL/min) with a mixing volume smaller than 20 nL. The time for complete mixing is in the range of milliseconds (e.g., 21 ms for Re = 10, 194 ms for Re = 0.88). The device shows negligible degradation in mixing performance for highly viscous solutions (∼50 times more viscous than water), macromolecule solutions, and colloidal solutions of nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.