Abstract

In this study, a directional electrode separator (DES) was designed and incorporated into a single-chamber bioelectrochemical system (BES) to reduce migration and reoxidation of hydrogen. This issue arises when H2, generated at the cathode, travels to the anode where anodic biofilms use H2. To test the feasibility of our design, a 3D-printed BES reactor equipped with a DES was inoculated with anaerobic digestor granules and operated under fed-batch conditions using fermented corn stover effluent. The DES equipped reactor achieved significantly higher current densities (∼53 A/m²) compared to a conventional single-chamber BES without a separator (∼16 A/m²), showing a 3.3 times improvement. Control abiotic electrochemical experiments revealed that the DES exhibited significantly higher proton conductivity (456±127 µS/mm) compared to a proton exchange membrane (67±21 µS/mm) with a statistical significance of P=0.03. The DES also effectively reduced H2 migration to the anode by 21-fold relative to the control. Overall, incorporating a DES in a single-chamber BES enhanced anodic current density by reducing H2 migration to the anode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.