Abstract
This paper develops a new radial super-efficiency data envelopment analysis (DEA) model, which allows input–output variables to take both negative and positive values. Compared with existing DEA models capable of dealing with negative data, the proposed model can rank the efficient DMUs and is feasible no matter whether the input–output data are non-negative or not. It successfully addresses the infeasibility issue of both the conventional radial super-efficiency DEA model and the Nerlove–Luenberger super-efficiency DEA model under the assumption of variable returns to scale. Moreover, it can project each DMU onto the super-efficiency frontier along a suitable direction and never leads to worse target inputs or outputs than the original ones for inefficient DMUs. Additional advantages of the proposed model include monotonicity, units invariance and output translation invariance. Two numerical examples demonstrate the practicality and superiority of the new model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.