Abstract

A zero-phase-shift-line (ZPSL) loop array with two closely spaced elements is proposed to achieve a directional distribution for ultrahigh frequency (UHF) near-field radio frequency identification (RFID) applications. The proposed array consists of two coaxially positioned ZPSL loop antenna elements of the same size, with an aperiodic ZPSL loop acting as a driven element and a periodic ZPSL loop functioning as a parasitic element. A directional magnetic field distribution can be achieved when an out-of-phase current along the parasitic loop is induced. A ZPSL loop array prototype with an interelement spacing of 15 mm, or 0.046 of the operating wavelength at 915 MHz, achieves a desired directional magnetic field distribution over a circular interrogation zone with a diameter of 160 mm. As a UHF near-field RFID reader antenna, the proposed array is able to achieve a 100% detection rate of SAG tags up to 120 mm by using an Impinj Speedway reader with an output power of 30 dBm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call