Abstract

Matrix cracking in continuous fibre reinforced composites follows the fibre orientations, but continuum damage mechanics models are not able to properly capture this. A novel method is presented here to alleviate mesh sensitivity of the damage growth direction and represent discrete matrix cracks. In a ply-by-ply mesoscale model, matrix cracks within a ply usually rely on mesh dependent strain localisation to decide the crack growth direction. The newly proposed algorithm instead uses the ply level fibre orientation as a model input, and maintains crack advancement along this direction, based on a neighbour searching scheme. A further advantage is that it is able to represent individual cracks discretely, with a predefined minimum crack spacing. This overcomes another limitation of continuum damage models, where discrete cracks are only represented in a smeared sense. This procedure has been shown to be able to reproduce complex crack networks in multidirectional laminates, independent of the mesh pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.