Abstract

In this paper, a hierarchical ensemble classification approach that utilizes a Directed Acyclic Graph (DAG) structure is proposed as a solution to the multi-class classification problem. Two main DAG structures are considered: (i) rooted DAG, and (ii) non-rooted DAG. The main challenges that are considered in this paper are: (i) the successive misclassification issue associated with hierarchical classification, and (i) identification of the starting node within the non-rooted DAG approach. To address these issues the idea is to utilize Bayesian probability values to: select the best starting DAG node, and to dictate whether single or multiple paths should be followed within the DAG structure. The reported experimental results indicated that the proposed DAG structure is more effective than when using a simple binary tree structure for generating a hierarchical classification model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.