Abstract

Photocatalytic reduction of CO2 to solar fuels is an ideal approach to simultaneously solve the global warming and energy crisis issues. Constructing a direct Z-scheme heterojunction is an effective way to overcome the drawbacks of single-component or conventional heterogeneous photocatalysts for photocatalytic CO2 reduction. Here, a novel type of direct Z-scheme g-C3N4/SnS2 heterojunction was constructed by depositing SnS2 quantum dots onto the g-C3N4 surface in situ via a simple one-step hydrothermal method. l-Cysteine not only acted as the sulfur source, but also grafted ammine groups onto g-C3N4 in the hydrothermal process, which greatly enhanced the CO2 uptake of the composite. XPS analysis and density functional theory (DFT) calculation show that electron transfer occurred from g-C3N4 to SnS2, resulting in the formation of interfacial internal electric fields (IEF) between the two semiconductors at equilibrium. As a result, Z-scheme charge transfer took place under photoexcitation, with the electrons in SnS2 combining with the holes in g-C3N4, which improved the extraction and utilization of photoinduced electron in g-C3N4. The g-C3N4/SnS2 hybrid shows superior photocatalytic CO2 reduction as compared with individual g-C3N4 and SnS2, which should be attributed to the IEF-induced direct Z-scheme as well as improved CO2 adsorption capacity. In situ FTIR spectra illustrate that HCOOH appeared as an intermediate during the CO2 conversion, which can only be generated by g-C3N4 according to the energy level of the photoinduced electrons, further confirming the Z-scheme configuration for the g-C3N4/SnS2 system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call