Abstract
This paper presents a direct traction boundary integral equation method (TBIEM) for three-dimensional crack problems. The TBIEM is based on the traction boundary integral equation (TBIE). The TBIE is collocated on both the external boundary and one of the crack surfaces. The displacements and tractions are used as unknowns on the external boundary and the relative crack opening displacements (CODs) are introduced as unknowns on the crack surface. In our implementation, all the surfaces of the considered structure are discretized into discontinuous elements to satisfy the continuity requirement for the existence of finite-part integrals, and special crack-front elements are constructed to capture the crack-tip behavior. To calculate the finite-part integrals, an adaptive singular integral technique is proposed. The stress intensity factors (SIFs) are computed through a modified COD extrapolation method. Numerical examples of SIFs computation are presented to demonstrate the accuracy and efficiency of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.