Abstract

In this paper, a direct time-domain procedure for the seismic analysis of dam–reservoir–foundation interactions is presented based on the scaled boundary finite element method (SBFEM). The SBFEM is a semi-analytical method and requires the discretization of boundary only. The geometric complexity in the bounded dam–reservoir–foundation system is easily handled in the SBFEM using quadtree meshes where each structural component can be discretized independently. The elastic wave fields in the unbounded foundation are rigorously captured through SBFE solutions in terms of displacement unit-impulse response functions, while the acoustic wave propagation in the semi-infinite reservoir is modelled by the SBFE-based doubly asymptotic open boundary. The input of seismic excitations is addressed by incorporating the Domain Reduction Method (DRM) into the SBFEM. Cracks are modelled efficiently and accurately by combining the SBFEM and quadtree meshes. The accuracy and efficiency of the proposed methodology is investigated by studying several benchmarks, Pine Flat dam and Jin’anqiao dam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.