Abstract
EPR line shapes can be calculated from the stochastic Liouville equation assuming a stochastic model for the reorientation of the spin probe. Here we use instead and for the first time a detailed molecular dynamics (MD) simulation to generate the stochastic input to the Langevin form of the Liouville equation. A 0.1 μs MD simulation at T = 50°C of a small lipid bilayer formed by 64 dipalmitoylphosphatidylcholine (DPPC) molecules at the water content of 23 water molecules per lipid was used. In addition, a 10 ns simulation of a 16 times larger system consisting of 32 DPPC molecules with a nitroxide spin moiety attached at the sixth position of the sn2 chain and 992 ordinary DPPC molecules, was used to investigate the extent of the perturbation caused by the spin probe. Order parameters, reorientational dynamics and the EPR FID curve were calculated for spin probe molecules and ordinary DPPC molecules. The timescale of the electron spin relaxation for a spin-moiety attached at the sixth carbon position of a DPPC lipid molecule is 11.9 × 107 rad s−1 and for an unperturbed DPPC molecule it is 3.5 × 107 rad s−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.