Abstract

AbstractIn this paper a parallel direct Schur–Fourier decomposition (DSFD) algorithm for the direct solution of arbitrary order discrete Poisson equations on parallel computers is proposed. It is based on a combination of a Direct Schur method and a Fourier decomposition and allows to solve each Poisson equation almost to machine accuracy using only one communication episode. Thus, it is well suited for loosely coupled parallel computers, that have a high network latency compared with the CPU performance. Several three‐dimensional direct numerical simulations (DNS) of wall‐bounded turbulent incompressible flows have been carried out using the DSFD algorithm. Numerical examples illustrating the robustness and scalability of the method on a PC cluster with a conventional 100 Mbits/s network are also presented. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.