Abstract
Constraints on the state vector must be taken into account in the state estimation problem. Recently, acceptance/rejection and projection methods are proposed in the particle filter framework for constraining the particles. A weighted least squares formulation is used for constraining samples in unscented and ensemble Kalman filters. In this paper, direct sampling from an approximate conditional probability density function (pdf) is proposed. It is obtained by approximating the a priori pdf as a Gaussian. The support of the conditional density is a subset of the intersection of two supports, the 3-sigma bounds of the priori Gaussian and the constrained state space. A direct sampling algorithm is proposed for handling linear and nonlinear equality and inequality constraints. The algorithm uses the constrained mode for nonlinear constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.