Abstract

In studies of hydrogenic systems via the recursive residue generation method (RRGM) the major bottleneck is the matrix vector product HC, between the Hamiltonian matrix H and a Lanczos vector C. For highly excited states and/or strong perturbations the size of H grows fast leading to storage problems. By making use of direct methods, i.e. avoidance of explicit construction of large Hamiltonian matrices, such problems can be overcome. Utilizing the underlying analytical properties of the Laguerre basis e- lambda rLk2l+2(2 lambda r) a direct RRGM (D-RRGM) for the unperturbed hydrogenic Hamiltonian is derived, changing the storage needs from scaling as N2 to 4N where N is the number of radial functions for each factorized H0(l,m) block with the possibility of parallel processing. A further computational simplification is introduced by putting the expression for the photoionization (PI) cross section in the rational form conventionally used in the representation of density of states (DOS). This allows the construction of the PI cross section directly from the tridiagonal Lanczos matrix avoiding the explicit calculation of individual eigenvalues and eigenvectors. To illustrate and verify the method the PI cross section for a hydrogen atom in a static electric field, for both pi and sigma polarization, was calculated for an electric field strength of F=5714 V cm-1. Sufficiently large basis sets could be employed so that good comparison with experiment and other theoretical work was obtained, including the field-induced modulations near the zero-field ionization limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.