Abstract

A direct (noniterative) reconstruction algorithm for electrical impedance tomography in the two-dimensional (2-D), cross-sectional geometry is reviewed. New results of a reconstruction of a numerically simulated phantom chest are presented. The algorithm is based on the mathematical uniqueness proof by A. I. Nachman [1996] for the 2-D inverse conductivity problem. In this geometry, several of the clinical applications include monitoring heart and lung function, diagnosis of pulmonary embolus, diagnosis of pulmonary edema, monitoring for internal bleeding, and the early detection of breast cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.