Abstract

In this paper, the direct one-dimensional beam model introduced by one of the authors is refined to take into account nonsymmetrical beam cross-sections. Two different beam axes are considered, and the strain is described with respect to both. Two inner constraints are assumed: a vanishing shearing strain between the cross-section and one of the two axes, and a linear relationship between the warping and twisting of the cross-section. Considering a grade one mechanical theory and nonlinear hyperelastic constitutive relations, the balance of power, and standard localization and static perturbation procedures lead to field equations suitable to describe the flexural-torsional buckling. Some examples are given to determine the critical load for initially compressed beams and to evaluate their post-buckling behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.