Abstract

AbstractThis work details efforts to estimate the direct manufacturing cost of solid oxide fuel cell (SOFC) stack components for combined heat and power applications. The main research goals are to identify the major contributors to fuel cell stack manufacturing costs, examine the influence of both production volume and stack size on cost, and compare the results of the cost trajectories with the U.S. Department of Energy SOFC stack manufacturing cost target of $238 kWe−1 (in 2015) and industry reported cost projections and to identify critical areas for manufacturing research and development. Stack component direct manufacturing costs are modeled for net electricity capacity of 1, 10, 50, 100 and 250 kWe across annual production volumes of 10, 1,000, 10,000 and 50,000 systems per year. Overall stack manufacturing costs range from $5,387 kWe−1 to a minimum of about $166 kWe−1 for a 250 kWe system at 50,000 systems per year. To meet the manufacturing cost target of $238 kWe−1, a minimum annual production of 100–250 MWe per year would be required. Reduction opportunities for stack cost are expected to be available, mainly with the adoption of thinner cells and stack components, higher levels of factory automation, and more sensitive in‐line defect diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.