Abstract

The laser sintering process and modification of yttria-stabilized zirconia (YSZ) coatings subjected to electrophoretic deposition (EPD) on YSZ air-plasma-sprayed (APS) thermal barrier coatings (TBCs) were investigated. A Ni-based superalloy was plasma-sprayed using yttria-stabilized zirconia (YSZ) to create a thermal barrier coating with a 400 μm thickness. The electrophoretic deposition (EPD) technique was used to deposit the nanopowder of YSZ on the surface of YSZ TBCs. In this study, a technology based on the direct sintering of a green EPD layer using a laser beam was employed. The best conditions for the deposition overlay of the YSZ coating using a DC current were obtained with an applied voltage of 40 V, deposition time of 5 min, and suspension concentration of 10 g/L. Iodine was added to the solutions as a stabilizing agent. To overcome the problems of high sintering temperatures, laser sintering was adopted as a new approach. The microstructures of all the specimens were studied using field emission scanning electron microscopy (FESEM) with energy-dispersive X-ray spectroscopy (EDS) analysis. Surface roughness was investigated using atomic force microscopy (AFM) analysis and the central line average (CLA). The direct laser sintering (DLS) process for the EPD overlay on the surface of the TBCs caused a reduction in surface roughness and porosity, and improvements in the microstructural and mechanical properties of the surface coatings were observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.