Abstract

This paper deals with the computational modeling and numerical simulation of contact problems at finite deformations using the finite element method. Quasi-static and dynamic problems are considered and two particular frictional conditions, full stick friction and frictionless cases, are addressed. Lagrange multipliers and regularized formulations of the contact problem, such as penalty or augmented Lagrangian methods, are avoided and a new direct elimination method is proposed. Conserving algorithms are also introduced for the proposed formulation for dynamic contact problems. An assessment of the performance of the resulting formulation is shown in a number of selected benchmark tests and numerical examples, including both quasi-static and dynamic contact problems under full stick friction and frictionless contact conditions. Conservation of key discrete properties exhibited by the time stepping algorithm used for dynamic contact problems is also shown in an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.