Abstract
Adirect electrochemical sensor based on covalent organic frameworks (COFs)/platinum nanoparticles (PtNPs) composite was fabricated for the detection of ofloxacin (OFX) in water. Firstly, the COF material was synthesized via the condensation reaction of 1,3,5-tris(4-aminophenyl)benzene (TAPB) with terephthalaldehyde (TPA) and integrated with PtNPs by in situ reduction. Then, TAPB-TPA-COFs/PtNPs composite was loaded onto the surface of the glassy carbon electrode (GCE) by drip coating to construct the working electrode (TAPB-TPA-COFs/PtNPs/GCE). The electrochemical performance of TAPB-TPA-COFs/PtNPs/GCE showed a significant improvement compared with that of TAPB-TPA-COFs/GCE, leading to a 3.2-fold increase in the electrochemical signal for 0.01mM OFX. Under optimal conditions, the TAPB-TPA-COFs/PtNPs/GCE exhibited a wide linear range of 9.901 × 10-3-1.406µM and 2.024-15.19µM with adetection limit of2.184 × 10-3µM. The TAPB-TPA-COFs/PtNPs/GCE-based electrochemical sensor with excellent performance provides great potential for the rapid and trace detection of residual OFX.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.