Abstract

Current designs for acoustic wave sensor system electronics are typically based on surface acoustic wave (SAW) oscillators, phase detectors, or phase-locked loops to measure changes in SAW velocity. The advantage of oscillators is a high resolution frequency output, as compared to phase detection systems which are more stable and can more easily provide amplitude information. Phase-locked loops (PLL) offer advantages of both the oscillator and phase detection systems but have the disadvantages of a fixed frequency range and the need for frequency counting circuitry. The objectives of this work were to study the performance of a direct digital synthesis (DDS) based PLL system with the advantages of a programmable frequency range, elimination of the need for frequency counting circuitry, and tolerance of large SAW sensor insertion losses. The DDS system tested had a resolution of 4 Hz and a range of 80 to 120 MHz in SAW humidity and temperature sensing applications indicating that the DDS based PLL is a practical electronic system for SAW sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.