Abstract

The current trend within the Tool and Die manufacturing sector is to machine components directly from hardened material using high speed 5-axis machining. This has been driven by the increasing requirements for cost competitiveness and lead-time reduction. Significant research effort has been applied to the optimisation of the process with factors such as tooling and machining strategies being considerably improved. However, the underlying structures of the machine tools used have remained unchanged and still consist of a serial kinematic chain. One of the standard justifications for the development of machines designed around parallel kinematic chains is that they should exhibit inherently greater stiffness, have higher axis accelerations and be capable of generating significantly higher cutting forces than conventional serial machines. This suggests that they should be ideally suited to the direct manufacture of tools and dies from hardened material. The comparison of different machine tool types is a complex and difficult process, particularly when their structures are fundamentally different. This paper describes an approach used to compare the performance of three very different types of machines. The technique uses two parameters; surface finish and geometric accuracy to assess the relative performance of different machine tools when cutting hardened material. The method is used to compare a serial kinematic 5-axis machining centre, a serial kinematic 3-axis machining centre and a parallel kinematic 6-axis machining centre. The results of the comparison are presented in this paper and show that all the machine tools performed to an equal standard for materials with a hardness of 54HRc but for very hard materials, 62HRc, the parallel kinematic machine out performed the serial machine tools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call