Abstract

In the freeze-drying process, the freezing step is one of the most important steps which determines the texture of the frozen material and, consequently, the final morphological characteristics of the freeze-dried material and its biological activity and its stability. As a matter of fact, the parameters of the freezing protocol have a direct effect on the pore size distribution and on the pore connectivity of the porous network of the freeze-dried matrix. Thus, the ice crystal morphology determines indirectly the mass and the heat transfer rates through the dry layer and, consequently, the freezing parameters have a strong influence on the total duration of the primary and secondary sublimation steps. The main objective of this study was to adapt and to develop a new optical direct microscopy method, based on the reflected flux differences, with episcopic axial lighting to characterize the structure of the different phases of a standard pharmaceutical matrix used for pharmaceutical proteins freeze-drying. First, the results obtained have been validated by another independent method, the scanning electron microscopy, carried out with freeze-dried samples. Finally, this technique has been principally used to investigate the effects of the freezing conditions on the ice crystal structure characterized by the distribution of the ice crystals mean sizes. Moreover, the influence of annealing treatment on ice crystal mean diameter and primary drying times has been also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.