Abstract

This paper studies the H/sub 2/ optimal deconvolution problem for periodic finite impulse response (FIR) and infinite impulse response (IIR) channels. It shows that the H/sub 2/ norm of a periodic filter can be directly quantified in terms of periodic system matrices and linear matrix inequalities (LMIs) without resorting to the commonly used lifting technique. The optimal signal reconstruction problem is then formulated as an optimization problem subject to a set of matrix inequality constraints. Under this framework, the optimization of both the FIR and IIR periodic deconvolution filters can be made convex, solved using the interior point method, and computed by using the Matlab LMI Toolbox. The robust deconvolution problem for periodic FIR and IIR channels with polytopic uncertainties are further formulated and solved, also by convex optimization and the LMIs. Compared with the lifting approach to the design of periodic filters, the proposed approach is simpler yet more powerful in dealing with multiobjective deconvolution problems and channel uncertainties, especially for IIR deconvolution filter design. The obtained solutions are applied to the design of an optimal filterbank yielding satisfactory performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.