Abstract

In the paper a general and direct method for implementation of influence lines in finite element software is provided. Generally influence lines are applied to identify the most critical location and combination of live loads in civil engineering structures. The proposed method is based on the Müller-Breslau principle and the basic idea is to equate discontinuous displacement fields with consistent nodal forces, thus obtaining influence functions only applying a single load case without changing the geometry or boundary conditions of the finite element model. Initially the method is developed by means of some illustrative beam problems, where the consistent nodal forces for angular, lateral and axial displacement discontinuities for a Bernoulli-Euler beam element are derived. Finally it is shown that the method is fully general and efficient in identifying the influence functions of generalized stresses in e.g. plates and shells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.