Abstract

Molecular oxygen, the conventional electron acceptor in fuel cells poses challenges specific to direct alcohol fuel cells (DAFCs). Due to the coupling of alcohol dehydrogenation with the scission of oxygen on the positive electrode during the alcohol crossover, the benchmark Pt-based air cathode experiences severe competition and depolarization losses. The necessity of heavy precious metal loading with domains for alcohol tolerance in the state of the art DAFC cathode is a direct consequence of this. Although efforts are dedicated to selectively cleave oxygen, the root of the problem being the inner sphere nature of either half-cell chemistry is often overlooked. Using an outer sphere electron acceptor that does not form a bond with the cathode during redox energy transformation, we effectively decoupled the interfacial chemistry from parasitic chemistry leading to a DAFC driven by alcohol passive carbon nanoparticles, with performance metrics ∼8 times higher than Pt-based DAFC-O2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call