Abstract

Dipeptidyl peptidase-4 (DPP-4) inhibitors have been reported to play a protective role against atherosclerosis in both animal models and patients with type 2 diabetes (T2D). However, since T2D is associated with dyslipidemia, hypertension and insulin resistance, part of which are ameliorated by DPP-4 inhibitors, it remains unclear whether DPP-4 inhibitors could have anti-atherosclerotic properties directly by attenuating the harmful effects of hyperglycemia. Therefore, we examined whether a DPP-4 inhibitor, teneligliptin, could suppress oxidized low-density lipoprotein (ox-LDL) uptake, foam cell formation, CD36 and acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) gene expression of macrophages isolated from streptozotocin-induced type 1 diabetes (T1D) mice and T1D patients as well as advanced glycation end product (AGE)-exposed mouse peritoneal macrophages and THP-1 cells. Foam cell formation, CD36 and ACAT-1 gene expression of macrophages derived from T1D mice or patients increased compared with those from non-diabetic controls, all of which were inhibited by 10 nmol/L teneligliptin. AGEs mimicked the effects of T1D; teneligliptin attenuated all the deleterious effects of AGEs in mouse macrophages and THP-1 cells. Our present findings suggest that teneligliptin may inhibit foam cell formation of macrophages in T1D via suppression of CD36 and ACAT-1 gene expression partly by attenuating the harmful effects of AGEs.

Highlights

  • Diabetes is associated with an increased risk of atherosclerotic cardiovascular disease, and half of diabetic patients die from this devastating disorder [1]

  • We examined here whether teneligliptin could inhibit oxidized low-density lipoprotein (ox-LDL) uptake, foam cell formation, CD36 and ACAT-1 gene expression of macrophages isolated from streptozotocin-induced type 1 diabetes (T1D) mice and T1D patients as well as advanced glycation end product (AGE)-exposed mouse peritoneal macrophages and THP-1 cells

  • We have already reported that teneligliptin significantly reduced ox-LDL uptake, foam cell formation, CD36/ACAT-1 mRNA levels of macrophages derived from type 2 diabetes (T2D) patients and db/db mice, an animal model of T2D [14]

Read more

Summary

Introduction

Diabetes is associated with an increased risk of atherosclerotic cardiovascular disease, and half of diabetic patients die from this devastating disorder [1]. Among them, advanced glycation end products (AGEs), senescent macromolecule derivatives formed at an accelerated rate under hyperglycemic and oxidative stress conditions, play a crucial role in atherosclerotic cardiovascular disease of patients with type 1 diabetes (T1D) and type 2 diabetes (T2D) [4,5,6]. The foam cell formation of macrophages is enhanced under diabetic states [14,15,16], which could contribute to the increased risk of macrovascular complications in diabetes [17]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call