Abstract
Nickel coordination compounds featuring Ni-O bonds are key structural motifs in both bioinorganic and synthetic chemistries. They serve as precursors for organic substrate oxidation and are commonly invoked intermediates in water oxidation and oxygen reduction schemes. Herein, we disclose a series of well-defined dinuclear nickel complexes that, upon treatment with CO2 and H2O2, afford the first nickel-bound peroxycarbonate. This unprecedented nickel-oxygen intermediate is stabilized by hydrogen bonding templated across the bimetallic core. Contrasting copper and iron analogues, the nickel peroxycarbonate reversibly dissociates H2O2, a process that is shown to be accelerated by exogenous CO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.