Abstract

The persistence of afferent activity at stimulus offset was examined in mice as a function of age (experiment 1) and noise level (experiment 2), using a procedure devised by von Bekesy to study the physiological decay of afferent activity. Noise offset was presented from 1 to 10 ms (the temporal gap) prior to an acoustic startle stimulus, with an abrupt edge or a linear ramp having the duration of the gap. Noise offset inhibited the startle reflex, this effect declining with age. For young (2-3 months old) and "young-old" mice (18-19 months old), the abrupt offset was always more inhibitory than the ramp, even for the one millisecond gap. In "old-old" mice (24-26 months old) abrupt and ramped offsets were not different until the gap exceeded 4 ms. The behavioral difference between abrupt and ramped decay times did not depend on noise level in young mice (4-5 months old), though overall inhibition increased with level. These data indicate that temporal acuity as measured by this gap detection method is limited in very old mice by their reduced ability to follow the abrupt change in noise level at the beginning of the gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.