Abstract

The dimeric copper(II) complex [Cu(C2O4)(H2oxado)(H2O)]2 (1), where H2oxado=oxamide dioxime, has been synthesized in water and characterized by elemental and thermal analyses, IR spectroscopy, and single-crystal X-ray diffraction. Complex 1 is composed of two neutral [Cu(C2O4)(H2oxado)(H2O)] entities connected by Cu-O bonds between oxalate oxygen atoms and copper(II) ions, thereby producing a centrosymmetric dimer, with the Cu(II) centers exhibiting a strongly distorted octahedral coordination. Neighboring dimers are hydrogen-bonded through O- H···O interactions leading overall to a layer structure. Thermal analyses of complex 1 showed two significant weight losses corresponding to the coordinated water molecules, followed by the decomposition of the network. Variable-temperature (10 - 300 K) magnetic susceptibility measurements revealed very weak antiferromagnetic interactions (θ = 0:86 K from Curie-Weiss law behavior) within the dinuclear unit

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call