Abstract

AbstractThe thermal evolution around shear zones is controlled by three major thermal processes: diffusion, advection and shear heating. We present a dimensional analysis to quantify, to first‐order, the relative contributions of these three processes to the thermal evolution around lithospheric‐scale shear zones. We consider 11 parameters that control the kinematics, the three‐dimensional (3‐D) geometry, the initial thermal structure and the average strength of the shear zone. Three dimensionless parameters are presented to quantify the relative contributions of the three thermal processes. We validate the dimensional analysis with 2‐D thermo‐kinematic numerical models. The applicability of the dimensional analysis to any kind of shear zone (i.e. thrust, normal‐slip and strike‐slip shear zones) makes it a useful tool that is complementary to previous numerical and analytical studies. Finally, thrust‐type shear zones are used to illustrate how the three thermal processes control the thermal evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.