Abstract

An oxidation/substitution strategy for the synthesis of silicon analogues of classical organic carbonyl compounds is reported, by making use of a novel β-diketiminate-supported sila-acyl chloride-the first example of such a compound isolated without the use of a stabilizing Lewis acid. Nucleophilic substitution at the SiIV center allows direct access to the corresponding sila-aldehyde and sila-ester. An alternative approach utilizing the reverse order of synthetic steps is thwarted by the facile rearrangement of the corresponding SiII systems featuring either H or OR substituents. As such, the isolation of (N-nacnac)Si(O)Cl represents a key step forward in enabling the synthesis of sila-carbonyl compounds by a synthetic approach ubiquitous in organic chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.