Abstract
A molecular dyad consisting of a photochromic dihydroindolizine unit covalently linked to a porphyrin performs, when illuminated through a third-harmonic-generating crystal, the functions of both an AND and a NAND Boolean logic gate with shared all-optical inputs. The NAND gate is of particular interest as it is a so-called universal gate, and hence all other digital systems can be implemented by combinations of NAND gates. The functions of the AND and the NAND gates rely on changes in absorption and emission of the dyad in the visible spectral region upon isomerization of the photochromic unit. The change in absorption which forms the basis for the AND gate function is ascribed to the colorization/decolorization of the photochrome itself in response to the optical inputs. The variation in emission intensity which constitutes the NAND gate function is a result of the changes in redox properties of the photochrome that follow upon isomerization, such that only one of the two isomers is competent to quench the porphyrin emission by electron transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.