Abstract

A complete digitally controlled oscillator (DCO) system for mobile phones is presented with a comprehensive study. The DCO is part of a single-chip fully compliant quad-band GSM transceiver realized in a 90-nm digital CMOS process. By operating the DCO at a 4 /spl times/ GSM low-band frequency followed by frequency dividers, the requirement of on-chip inductor Q and the amount of gate oxide stress are relaxed. It was found that a dynamic divider is needed for stringent TX output phase noise while a source-coupled-logic divider can be used for RX to save power. Both dividers are capable of producing a tight relation between four quadrature output phases at low voltage and low power. Frequency tuning is achieved through digital control of the varactors which serve as an RF DAC. Combining a MIM capacitor array and two nMOS transistor arrays of the varactors for the RF DAC, a highly linear oscillator gain which is also insensitive to process shift is achieved. The finest varactor step size is 12 kHz at the 1.6-2.0 GHz output. With a sigma-delta dithering, high frequency resolution is obtained while having negligible phase noise degradation. The measured phase noise of -167 dBc/Hz at 20 MHz offset from 915 MHz carrier and frequency tuning range of 24.5% proves that this DCO system can be used in SAW-less quad-band transmitters for mobile phones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call