Abstract

Accurate life prediction and reliability evaluation of lithium-ion batteries are of great significance for predictive maintenance. In the whole life cycle of a battery, the accurate description of the dynamic and stochastic characteristics of life has always been a key problem. In this paper, the concept of the digital twin is introduced, and a digital twin for reliability based on remaining useful cycle life prediction is proposed for lithium-ion batteries. The capacity degradation model, stochastic degradation model, life prediction, and reliability evaluation model are established to describe the randomness of battery degradation and the dispersion of the life of multiple cells. Based on the Bayesian algorithm, an adaptive evolution method for the model of the digital twin is proposed to improve prediction accuracy, followed by experimental verification. Finally, the life prediction, reliability evaluation, and predictive maintenance of the battery based on the digital twin are implemented. The results show the digital twin for reliability has good accuracy in the whole life cycle. The error can be controlled at about 5% with the adaptive evolution algorithm. For battery L1 and L6 in this case, predictive maintenance costs are expected to decrease by 62.0% and 52.5%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call