Abstract
Digitalization through Industry 4.0 technologies is one of the essential steps for the complete collaboration, communication, and integration of heterogeneous resources in a manufacturing organization towards improving manufacturing performance. One of the ways is to measure the effective utilization of critical resources, also known as bottlenecks. Finding such critical resources in a manufacturing system has been a significant focus of manufacturing research for several decades. However, finding a bottleneck in a complex manufacturing system is difficult due to the interdependencies and interactions of many resources. In this work, a digital twin framework is developed to detect, diagnose, and improve bottleneck resources using utilization-based bottleneck analysis, process mining, and diagnostic analytics. Unlike existing bottleneck detection methods, this novel approach is capable of directly utilizing enterprise data from multiple levels, namely production planning, process execution, and asset monitoring, to generate event-log which can be fed into a digital twin. This enables not only the detection and diagnosis of bottleneck resources, but also validation of various what-if improvement scenarios. The digital twin itself is generated through process mining techniques, which can extract the main process map from a complex system. The results show that the utilization can detect both sole and shifting bottlenecks in a complex manufacturing system. Diagnosing and managing bottleneck resources through the proposed approach yielded a minimum throughput improvement of 10% in a real factory setting. The concept of a custom digital twin for a specific context and goal opens many new possibilities for studying the strong interaction of multi-source data and decision-making in a manufacturing system. This methodology also has the potential to be exploited for multi-objective optimization of bottleneck resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.