Abstract
This article proposes a health indicator estimation method based on the digital-twin concept aiming for condition monitoring of power electronic converters. The method is noninvasive, without additional hardware circuits, and calibration requirements. An application for a buck dc-dc converter is demonstrated with theoretical analyses, practical considerations, and experimental verifications. The digital replica of an experimental prototype is established, which includes the power stage, sampling circuit, and close-loop controller. Particle swarm optimization algorithm is applied to estimate the unknown circuit parameters of interest based on the incoming data from both the digital twin and the physical prototype. Cluster-data of the estimated health indicators under different testing conditions of the buck converter is analyzed and used for observing the degradation trends of key components, such as capacitor and MOSFET. The outcomes of this article serve as a key step for achieving noninvasive, cost-effective, and robust condition monitoring for power electronic converters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.