Abstract

This work presents a computer simulation of the exhaust nitric oxide and soot emission histories from a four stroke, naturally aspirated, Diesel engine with a swirl prechamber (divided chamber). The simulation is based on a thermodynamic analysis, which was validated successfully concerning the performance of the engine (load, fuel consumption, maximum pressures, etc). The analysis includes the calculation of the heat exchange between gas and walls in both the main chamber and (swirl) prechamber, after computing the relevant characteristic velocities and lengths, while combustion in both the main chamber and the swirl prechamber is attacked by proposing a two-zone combustion model. The concentration of the constituents in the exhaust gases is calculated by incorporating a complete chemical equilibrium scheme for the C−H−O system of the eleven species considered, together with chemical rate equations for the calculation of nitric oxide (NO). A model for the evaluation of soot formation and oxidation rates is also included, in order to compute the net soot concentration. The contribution of each chamber to the formation of NO and soot is given by presenting time (crank angle) diagrams of the net NO and soot formation inside each chamber (histories of formation).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.