Abstract

This note presents a digital signal processing module for the real-time nonlinearity compensation of a homodyne interferometer. The nonlinearity is corrected by using the parameter values describing two phase-quadrature signals, through simple arithmetic calculation of the quadrature signals at specific phases, which are multiples of π/4. A field-programmable gate array was employed for the real-time implementation of a processing module since it has reconfigurable input/output and high precision synchronization. The developed module has a minimum loop time of 4.4 µs and can compensate the nonlinearity error less than ±0.5 nm, which is comparable with the elliptical fitting method. We also proved the performance of the module by examining the convergence and the stability of parameter values under various operational conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call