Abstract

A digital quantum simulation of the Agassi model from nuclear physics is proposed and analyzed. The proposal is worked out for the case with four different sites. Numerical simulations and analytical estimations are presented to illustrate the feasibility of this proposal with current technology. The proposed approach is fully scalable to a larger number of sites. The use of a quantum correlation function as a probe to explore the quantum phases by quantum simulating the time dynamics, with no need of computing the ground state, is also studied. Evidence is given showing that the amplitude of the time dynamics of a correlation function in this quantum simulation is linked to the different quantum phases of the system. This approach establishes an avenue for the digital quantum simulation of useful models in nuclear physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call