Abstract

AbstractAnalogue realizations of neural networks are superior in speed. the hardware accelerator boards using catalogue programmable VLSI ICs represent a trade‐off having higher reconfigurability and lower cost. This paper presents such a solution for a cellular neural network (CNN).The architecture of the present design (CNN‐HAC) using four standard DSPs to calculate the transient response of a one‐layer CNN containing (0.25–0.75) × 106 analogue neural cells (depending on the type of template) is presented. the architecture and also the design principles are independent of the number of processors. the actual design was made in the form of a PC add‐on board.The global control unit, which connects the board to the host firmware and communicates control signals to/from the local control units of the DSPs, was realized mainly with EPLDs.A special correspondence between the virtual processing elements—calculating the time‐discrete models of the analogue neural cells—and the physical ones is discussed in detail. It is realized in an architecture with a simple, two‐directional interprocessor communication. This architecture can be ‘scaled down’ using faster processors, EPLDs and memories. the present version runs with 2 μs/cell/iteration speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.