Abstract
There is a long history and a growing interest in the canine as a subject of study in neuroscience research and in translational neurology. In the last few years, anatomical and functional magnetic resonance imaging (MRI) studies of awake and anesthetized dogs have been reported. Such efforts can be enhanced by a population atlas of canine brain anatomy to implement group analyses. Here we present a canine brain atlas derived as the diffeomorphic average of a population of fifteen mesaticephalic dogs. The atlas includes: 1) A brain template derived from in-vivo, T1-weighted imaging at 1 mm isotropic resolution at 3 Tesla (with and without the soft tissues of the head); 2) A co-registered, high-resolution (0.33 mm isotropic) template created from imaging of ex-vivo brains at 7 Tesla; 3) A surface representation of the gray matter/white matter boundary of the high-resolution atlas (including labeling of gyral and sulcal features). The properties of the atlas are considered in relation to historical nomenclature and the evolutionary taxonomy of the Canini tribe. The atlas is available for download (https://cfn.upenn.edu/aguirre/wiki/public:data_plosone_2012_datta).
Highlights
The domestic dog has served as an experimental model in neuroscience experiments and translational neurology for several centuries
One of the earliest localizations of visual cortex was in the dog, identified using focal lesions [4], and in the early 20th century, the dog was used as a model of traumatic brain injury from missile wounds [5]
The high-res volumetric template serves as the basis of a cortical surface reconstruction of the canine brain
Summary
The domestic dog has served as an experimental model in neuroscience experiments and translational neurology for several centuries. One of the earliest localizations of visual cortex was in the dog, identified using focal lesions [4], and in the early 20th century, the dog was used as a model of traumatic brain injury from missile wounds [5]. The dog has become an important model system for inherited retinal disease [8], and gene therapeutic treatment of these disorders The dog has become a valuable model of inherited leukodystrophies [15,16], and potential gene therapeutic treatment of lysosomal enzyme deficiencies [17,18]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.