Abstract

AbstractTraditional Chinese landscape painting is prone to low-resolution image issues during the digital protection process. To reconstruct high-quality images from low-resolution landscape paintings, we propose a novel Chinese landscape painting generation diffusion probabilistic model (CLDiff), which is similar to the Langevin dynamic process, and realizes the transformation of the Gaussian distribution into the empirical data distribution through multiple iterative refinement steps. The proposed CLDiff can provide ink texture clear super-resolution predictions by gradually transforming the pure Gaussian noise into a super-resolution landscape painting condition on a low-resolution input through a parameterized Markov Chain. Moreover, by introducing an attention module with an energy function into the U-Net architecture, we turn the denoising diffusion probabilistic model into a powerful generator. Experimental results show that CLDiff achieves better visual results and highly competitive performance in traditional Chinese Landscape painting super-resolution tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.