Abstract
N(3)-(4-Methoxyfumaroyl)-L-2,3-diaminopropanoic acid (FMDP), a specific and potent inactivator of glucosamine-6-phosphate (GlcN-6-P) synthase from Candida albicans, exhibits relatively poor anticandidal activity, with an MIC value amounting to 50 microg ml(-1) (200 microM). Uptake of FMDP into C. albicans cells follows saturation kinetics and is sensitive to the action of metabolic inhibitors, thus indicating the active transport mechanism. However, the acetoxymethyl ester of FMDP penetrates the fungal cell membrane by free diffusion and is rapidly hydrolysed by C. albicans cytoplasmic enzymes to release the free FMDP. This mechanism gives rise to continuous accumulation of the enzyme inhibitor and results in higher antifungal activity of the FMDP ester (MIC=3.1 microg ml(-1), 10 microM). These results show that the 'pro-drug' approach can be successfully applied for the enhancement of antifungal activity of glutamine analogues that inhibit GlcN-6-P synthase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.