Abstract

In this paper, we propose a diffuse interface model and finite element approximation for two-phase magnetohydrodynamic (MHD) flows with different viscosities and electric conductivities. An energy stable scheme, which is based on the finite element method for the spatial discretization and first order semi-implicit scheme combined with convex splitting method for the temporal discretization, is proposed to solve this new model. The numerical scheme is proved to be mass-conservative and energy law preserving. By Leray–Schauder fixed point theorem, the existence of solutions to the numerical scheme is shown. The uniqueness of the numerical solutions is obtained. Utilizing the stability of the numerical scheme and the compactness method, the existence of the weak solutions to the two-phase MHD model is established as well. Furthermore, given more regularity on the weak solution, the convergence of the numerical scheme is derived. Finally, numerical experiments are provided to verify the theoretical results and validate the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.