Abstract

The non-specific adsorption behaviors of various interferents on the surface of a molecularly imprinted polymer (MIP) are adverse for the selectivity of an MIP-based sensor, which can be overcome via a differential strategy by using the differential signal between MIP- and non-imprinted polymer (NIP)-based sensors. However, the normal differential mode is not suitable for the MIP-based sensors with non-linear calibration curves. Herein, an improved differential strategy is reported for an MIP-based sensor with a semi-logarithmic calibration curve, demonstrated by an electrochemiluminescence (ECL) sensor for dopamine (DA). Glassy carbon electrode (GCE) was modified by the mixture of g-C3N4, TiO2 nanoparticles (NPs) and carbon nanotubes (CNTs). MIP membrane for DA was fabricated on the surface of g-C3N4/TiO2NPs/CNTs/GCE using chitosan for film-forming, obtained MIP@GCE. To enhance the anti-interference ability of the MIP-based DA sensor, the difference between exponential functions ECL intensities of MIP@GCE and NIP@GCE is used as the analytical signal in the improved differential strategy. The differential signal was increased linearly with increasing DA concentration ranging from 10 pM to 0.10 μM, with the detection limit of 5.6 pM. The interference level of Cu2+ on DA determination in the improved differential mode is only 9.7% of that in the normal MIP mode. The improved differential strategy can be used in other MIP-based sensors with semi-logarithmic calibration curves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call