Abstract
Due to the prominent development of public transportation systems, the taxi flows could nowadays work as a reasonable reference to the trend of urban population. Being aware of this knowledge will significantly benefit regular individuals, city planners, and the taxi companies themselves. However, to mindlessly publish such contents will severely threaten the private information of taxi companies. Both their own market ratios and the sensitive information of passengers and drivers will be revealed. Consequently, we propose in this paper a novel framework for privacy-preserved traffic sharing among taxi companies, which jointly considers the privacy, profits, and fairness for participants. The framework allows companies to share scales of their taxi flows, and common knowledge will be derived from these statistics. Two algorithms are proposed for the derivation of sharing schemes in different scenarios, depending on whether the common knowledge can be accessed by third parties like individuals and governments. The differential privacy is utilized in both cases to preserve the sensitive information for taxi companies. Finally, both algorithms are validated on real-world data traces under multiple market distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.