Abstract

This paper proposes a new random forest classification algorithm based on differential privacy protection. In order to reduce the impact of differential privacy protection on the accuracy of random forest classification, a hybrid decision tree algorithm is proposed in this paper. The hybrid decision tree algorithm is applied to the construction of random forest, which balances the privacy and classification accuracy of the random forest algorithm based on differential privacy. Experiment results show that the random forest algorithm based on differential privacy can provide high privacy protection while ensuring high classification performance, achieving a balance between privacy and classification accuracy, and has practical application value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.