Abstract

We show that the Scott topology induces a topology for real-valued Lipschitz maps on Banach spaces which we call the L-topology. It is the weakest topology with respect to which the L-derivative operator, as a second order functional which maps the space of Lipschitz functions into the function space of non-empty weak ∗ compact and convex valued maps equipped with the Scott topology, is continuous. For finite dimensional Euclidean spaces, where the L-derivative and the Clarke gradient coincide, we provide a simple characterization of the basic open subsets of the L-topology. We use this to verify that the L-topology is strictly coarser than the well-known Lipschitz norm topology. A complete metric on Lipschitz maps is constructed that is induced by the Hausdorff distance, providing a topology that is strictly finer than the L-topology but strictly coarser than the Lipschitz norm topology. We then develop a fundamental theorem of calculus of second order in finite dimensions showing that the continuous integral operator from the continuous Scott domain of non-empty convex and compact valued functions to the continuous Scott domain of ties is inverse to the continuous operator induced by the L-derivative. We finally show that in dimension one the L-derivative operator is a computable functional.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.