Abstract
Channel state information (CSI) provided by a limited feedback channel can be utilized to increase system throughput. However, in multiple-input-multiple-output (MIMO) systems, the signaling overhead realizing this CSI feedback can be quite large, whereas the capacity of the uplink feedback channel is typically limited. Hence, it is crucial to reduce the amount of feedback bits. Prior work on limited feedback compression commonly adopted the block-fading channel model, where only temporal or spectral correlation in a wireless channel is considered. In this paper, we propose a differential feedback scheme with full use of the temporal and spectral correlations to reduce the feedback load. Then, the minimal differential feedback rate over a MIMO time-frequency (or doubly)-selective fading channel is investigated. Finally, the analysis is verified by simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.